The predictive role of pre-cue EEG rhythms on MI-based BCI classification performance.
نویسندگان
چکیده
BACKGROUND One of the main issues in motor imagery-based (MI-based) brain-computer interface (BCI) systems is a large variation in the classification performance of BCI users. However, the exact reason of low performance of some users is still under investigation. Having some prior knowledge about the performance of users may be helpful in understanding possible reasons of performance variations. NEW METHOD In this study a novel coefficient from pre-cue EEG rhythms is proposed. The proposed coefficient is computed from the spectral power of pre-cue EEG data for specific rhythms over different regions of the brain. The feasibility of predicting the classification performance of the MI-based BCI users from the proposed coefficient is investigated. RESULTS Group level analysis on N=17 healthy subjects showed that there is a significant correlation r=0.53 (p=0.02) between the proposed coefficient and the cross-validation accuracies of the subjects in performing MI. The results showed that subjects with higher cross-validation accuracies have yielded significantly higher values of the proposed coefficient and vice versa. COMPARISON WITH EXISTING METHODS In comparison with other previous predictors, this coefficient captures spatial information from the brain in addition to spectral information. CONCLUSION The result of using the proposed coefficient suggests that having higher frontal theta and lower posterior alpha prior to performing MI may enhance the BCI classification performance. This finding reveals prospect of designing a novel experiment to prepare the user towards improved motor imagery performance.
منابع مشابه
Classification of EEG-based motor imagery BCI by using ECOC
AbstractAccuracy in identifying the subjects’ intentions for moving their different limbs from EEG signals is regarded as an important factor in the studies related to BCI. In fact, the complexity of motor-imagination and low amount of signal-to-noise ratio for EEG signal makes this identification as a difficult task. In order to overcome these complexities, many techniques such as variou...
متن کاملA review on EEG based brain computer interface systems feature extraction methods
The brain – computer interface (BCI) provides a communicational channel between human and machine. Most of these systems are based on brain activities. Brain Computer-Interfacing is a methodology that provides a way for communication with the outside environment using the brain thoughts. The success of this methodology depends on the selection of methods to process the brain signals in each pha...
متن کاملEvaluation of the Hidden Markov Model for Detection of P300 in EEG Signals
Introduction: Evoked potentials arisen by stimulating the brain can be utilized as a communication tool between humans and machines. Most brain-computer interface (BCI) systems use the P300 component, which is an evoked potential. In this paper, we evaluate the use of the hidden Markov model (HMM) for detection of P300. Materials and Methods: The wavelet transforms, wavelet-enhanced indepen...
متن کاملGamma band activity associated with BCI performance: simultaneous MEG/EEG study
While brain computer interface (BCI) can be employed with patients and healthy subjects, there are problems that must be resolved before BCI can be useful to the public. In the most popular motor imagery (MI) BCI system, a significant number of target users (called "BCI-Illiterates") cannot modulate their neuronal signals sufficiently to use the BCI system. This causes performance variability a...
متن کاملA review on EEG based brain computer interface systems feature extraction methods
The brain – computer interface (BCI) provides a communicational channel between human and machine. Most of these systems are based on brain activities. Brain Computer-Interfacing is a methodology that provides a way for communication with the outside environment using the brain thoughts. The success of this methodology depends on the selection of methods to process the brain signals in each pha...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of neuroscience methods
دوره 235 شماره
صفحات -
تاریخ انتشار 2014